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ABSTRACT 

The purpose of this thesis is to determine the feasibility of underwater friction stir 

welding (FSW) of high-strength, quench and temper low carbon steels that are 

susceptible to hydrogen-assisted cracking (HAC).  The specific benefits of underwater 

FSW would be weld repairs of ship and submarine control surfaces and hulls without the 

need for dry-docking and extensive environmental control procedures. A single tool of 

polycrystalline cubic boron nitride (PCBN) in a Tungsten-Rhenium binder was used to 

conduct three bead-on-plate FSW traverses, approximately 40 inches in length on 0.25 

inch HY-80 steel.  The first traverse was a dry weld and the second and third traverse 

were wet (underwater) welds, all conducted at a combination of 400 revolutions per 

minute and 2 inches per minute. The wet welds were conducted for the purpose of 

assessing the HAC susceptibility of the process. 
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I. INTRODUCTION 

High strength low alloy steels such as HY-80 and HY-100 are used in the 

quenched and tempered condition for several applications in the US Navy, especially in 

ship hulls, and extensive welding is carried out in both fabrication as well as repair. The 

strengthening of high-strength steels by martensitic transformation leaves these alloys 

susceptible to Hydrogen Assisted Cracking (HAC) [1].  As a result of this susceptibility, 

welding these metals requires extensive preparations including, among others, pre- and 

post-heating, filler electrode controls such as baking and storage, and control of moisture 

and hydrocarbons.  Welding high-strength steels underwater is difficult and requires 

extensive and expensive additional preparations involving such special techniques, 

equipment and highly specialized training adding to the cost and time of repairs [2]. 

 Los Angeles class submarines have had fatigue cracking on the control surfaces 

and the difficulty in welding high-strength steels requires drydocking the submarine to 

make repairs.  Maintaining the necessary environmental controls in a drydock is difficult 

due to the seawater trapped inside of the control surfaces.  Putting a submarine in 

drydock costs the Navy and taxpayers hundreds of thousands of dollars annually. 

 Friction stir welding (FSW) and processing (FSP) are solid state processes used in 

the joining and processing of metals.  Friction stir welding and processing have been used 

on the Littoral Combat Ship (LCS) and the processing of nickel aluminum bronze 

propellers used on Navy ships and submarines.  Friction stir welding is accomplished by 

using a cylindrical, rotating tool with a shoulder and projecting pin in pressed into the 

surface of the abutting edges of the materials to be welded.  The material is softened 

enough for the tool pin to plunge into the material until the shoulder contacts the surface 

via frictional and adiabatic heating.  The tool traverses along the weld line to produce a 

weld through the severe plastic deformation in the stir zone.  Figure 1 illustrates the basic 

FSW/P nomenclature.  Numerous studies have been conducted on the friction stir 

welding effects of hardenable alloy steels but, to date, very few studies have been 
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conducted on underwater friction stir welding, except for the recent NPS thesis work by 

Lieutenant Norman Overfield (NPS Thesis, December 2010).   

  

 

Figure 1.   FSW/P Nomenclature. After [3] 

 Friction stir welding and processing were invented by The Welding Institute in 

Cambridge, United Kingdom in 1991.  However, most advances have been accomplished 

in more recent years due to the limitations of materials available for the tool.  FSW/P will 

become more economical as more advances are made in the tool, robust and portable 

equipment, techniques.  However, friction stir welding and processing will likely not 

replace traditional methods for welding most steels.  It will likely be used in niche 

applications.   

 Since friction stir welding and processing is conducted below the melting point of 

the material, hydrogen solubility will be reduced and hydrogen resulting from 

decomposition of water during FSW/P is not expected.  As a result, FSW could be used 

to produce defect-free welds in hardenable alloy steels underwater and be economically 

beneficial.   
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II. BACKGROUND 

 As tool materials and designs advance, studies on friction stir welding and 

processing have steadily increased.  Experiments on steels from ultralow carbon to 

ultrahigh carbon content [4, 5] have yielded defect free welds.  Defect free welds have 

also been produced in specialized steels including DP980 (advanced high strength steel) 

[6] and SKD61 tool steel [7]. 

 The chemical composition and tool parameters such as tool RPM, traversing IPM 

and normal force determine the microstructure of friction stir welded or processed 

material.  In studies conducted, defect free welds have been produced using tool and 

traverse speed parameters ranging from 1000 RPM and 15 millimeters per second (35 

IPM) [8] to 100 RPM and 25 millimeters per minute (1 IPM) [9].  Normal force data is 

incomplete; however, they tend to range from 5kN (1124 lbf) [8] to 40kN (9000 lbf) [10].  

As a result of studies so far, each specific type of steel will require additionally studies to 

determine its own set of parameters and tolerances required to produce a defect free weld, 

as long as the weld is conducted within the set standards.   

 A martensitic microstructure was produced in the stir zone and TMAZ, on a 

smaller scale, in most cases.  In these cases, the temperature in the stir zone exceeded α1 

(temperature at which complete austenite forms) during the processing, therefore rapidly 

cooled, and formed martensite.  One study produced martensite free welds by controlling 

the friction stir welding parameters which prevented the stir zone temperature from 

exceeding α1 [11].  As a result of these studies, post-weld metallurgical properties can be 

controlled by controlling the friction stir welding or processing parameters.  Therefore, 

these parameters can be modified to suit a wide range of applications and eliminate pre- 

and/or post-weld heat treatments.   

 So far, studies evaluating the feasibility of FSW/P underwater are extremely 

limited.  Underwater welding requires unique skills and equipment not normally available 

to a shipyard welder using conventional fusion welding techniques.  This results in 

increased cost and time.  U.S. Navy shipyards do not typically employ qualified 
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underwater welders. Also, industry standards for underwater welding of HY-80 or HY-

100 steels do not exist [12].  HY-80 and HY-100 alloys involve heat treating to produce 

tempered martensitic microstructures.  As a result, these materials are susceptible to 

hydrogen assisted cracking.  The potential of FSW/P to prevent HAC in hardenable steel 

alloys is the basis for this and future research.  Additionally, FSW/P of HY-80 and 

similar steels could result in significant cost savings by eliminating the need for a dry 

dock to complete submarine repairs.  This study was initiated to compare previous results 

obtained by LT Norman Overfield to FSW of HY-80 steel.  HY-80 steel was obtained 

and a comparative study of 4142 steel to HY-80 steel was conducted to understand the 

influence of chemical composition on the resulting microstructures and mechanical 

properties. 
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III. EXPERIMENTAL PROCEDURE 

A. MATERIAL PROCESSING 

A steel plate was obtained from the Naval Surface Warfare Center – Carderock 

Division, Bethesda, MD, that was 0.25 inches (6.4mm) thick and 26.5 inches (mm) wide 

by 43.5 inches (mm) long.  Pre-welding chemical analysis was conducted by Anamet, 

Inc., Hayward, CA and confirmed the material conformed to the HY-80 steel 

specification. The plate was cut into three sections for base metal analysis and dry and 

wet (underwater) friction stir processing and for future research.  Each plate measured 

approximately 26.5 inches (mm) long by 14.5 inches (mm) wide.  One plate was 

sectioned to produce 25 Charpy V-notch samples and 5 tensile test samples each in both 

the rolled and transverse directions.  The second plate was cut into two sections each 

measuring approximately 26.5 inches (mm) by 7.25 inches (mm).  One section each was 

used for dry and wet (underwater) FSP.  Initially, the plate was sand blasted to remove 

mill-scale.  However, following the dry friction stir weld, the second plate was hand-

ground to be sure all mill-scale was removed. All FSW was performed parallel to the 

long dimension [13].  The FSP was conducted by Advanced Metal Products and 

MegaStir Technologies in Provo, Utah.  Figure 2 is the underwater friction stir welding 

chamber.  It is made from clear plexiglass to enable clear observation of the FSW/P 

process.  A copper cooling coil is attached to a chiller to provide heat removal of the 

water and prevent the salt water from boiling off.  The chamber is sealed to plate using 

silicone adhesive.  The water in the chamber is saltwater (3.5% salt content). 



 6

 

Figure 2.   Underwater chamber with cooling coil for FSW/P. From [13] 

A dry FSP run of approximately 25 inches was completed at 400 RPM and 2 IPM.  

A plunge load of greater than 15,000 pounds was applied and decreased to 10,000 

pounds.  A software error caused the tool to extract after a few inches of weld, requiring a 

second plunge and traverse (Figure 3) [13].  Following the second plunge, the first 12 

inches of weld surface looked good.  There were, however, occasional surface flaws on 

the advancing side that may have been caused by surface oxides or mill-scale but further 

study is required to determine the exact cause (Figure 4). As the weld progressed, the 

surface flaws became more pronounced and severe.  In the final 10 inches of the weld 

run, severe lack of bonding on the advancing side is visible (Figure 5) [13].  As a result, 

the tool was moved to a parallel location and an attempt was made using different 

approaches to produce a defect free weld including improved surface preparation and 

different FSW parameters (Figure 6).  The severe defects remained but weld flash was 

reduced with improved surface finishing.   
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Figure 3.   Dry FSW second plunge and traverse. From [13] 

 

 

Figure 4.   Shallow surface defects on the tool advancing side of dry FSW. From [13] 
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Figure 5.   Lack of bonding on advancing of last 10 inches of weld length. From [13] 

 

Figure 6.   Attempts at defect free weld runs by improving surface finish and changing 
FSW parameters. Advancing side defect remained but weld flash 

eliminated. From [13] 

 The tool material was polycrystalline cubic boron nitride (pcbn) consolidated with 

a metallic binder identified as MS80.  The tool design was a convex scroll shoulder with 

a step spiral pin (CS4) (Figure 7) [13].   
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Figure 7.   Polycrystalline cubic boron nitride (PCBN) CS4 tool used for FSW. From 
[13] 

 Due to the size limitations of the underwater chamber, two approximately 10 inch 

underwater weld runs were completed for a total length of approximately 20 inches.  

Figure 8 shows the underwater weld setup in progress.  Figure 9 shows a relatively good 

surface appearance for the first weld.  A small amount of weld flash and surface 

oxidation is visible but the weld appears to be free of defects and full penetration.  Figure 

10 shows the weld root surface and the tool extraction site [13]. Underwater welding was 

carried out in water containing 3.5wy% NaCl in order to simulate the welding in 

seawater. 
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Figure 8.   Underwater FSW in progress. From [13] 

 

Figure 9.   Surface appearance of first underwater FSW run. From [13] 
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Figure 10.   Root surface of underwater friction stir weld. From [13] 

 For the second underwater FSW run, the chamber was moved to the other half of 

the plate and resealed.  During the second FSW, a leaked occurred and all of the water 

drained from the chamber.  The chamber was refilled with fresh tap water and the weld 

was finished [13].  Figure 11 shows the weld surface of the second wet FSW [13]. 

 

 

Figure 11.   Second underwater FSW. From [13] 

B.  CHEMICAL TESTING 

 Anamet, Inc. performed chemical testing on the base material to verify that the 

material was HY-80 steel and to establish a baseline to which future chemical testing of 

FSW/P material can be compared.  Anamet, Inc. determined that the material was in fact 

HY-80 steel [14] based on their chemical analysis. 
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C. MICROSTRUCTURE ANALYSIS 

1. Specimen Preparation 

 Figure 12 represents how the unprocessed samples were machined out of the 

plate.  Samples were prepared using standard processes and final polishing was 

performed using a 0.5 micron Al2O3 suspension.  The prepared surfaces were etch using a 

5% Nital etchant (5% HNO3 – 95% Methanol).   

 

Figure 12.   Machining layout 

2.  Optical Microscope Imaging 

An optical microscope was used to examine the specimens under various 

magnifications. Several locations were viewed such as BM, TMAZ (advancing side), and 

SZ. Low-magnification montages were developed to show the entire width of the SZ, left 

and right TMAZ, as well as BM on either side.  

3.  SEM Imaging 

A Ziess NEON40 SEM was used with field emission electron source operating at 

15 keV to examine the specimens under various magnifications. The results from several 

locations are noted in Chapter IV. 
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D.  MECHANICAL TESTING 

1.  Microhardness 

A HVS-1000 digital microhardness tester was used to micro-indent each 

specimen to establish a Vickers hardness profile in a grid pattern (Figure 13). 

 

 

Figure 13.   Illustration of the Vickers hardness grid pattern.  Gray line represents 
nominal stir zone shape. 

A test load of 9.8 N with a 15 sec pause was used with a loading and unloading 

rate of 20 N/min. 

2.  Charpy V-Notch 

a.  Specimen Preparation 

Charpy V-Notch test specimens were machined from the base material 

plate using a band saw and finished with a CNC machine to ASTM standards [15].  

Figure 14 represents the Charpy V-Notch.  Twenty-five samples were made in break in 

the rolled direction and 25 samples were made to break in the transverse direction.  
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Figure 14.   Charpy V-Notch test sample. From [15] 

b. Specimen Testing 

The Charpy V-Notch test was conducted using at varying temperatures 

ranging from approximately -200°C (Liquid Nitrogen) to 21.5°C (ambient room 

temperature). Low temperature tests were carried out at ice (0°C), iced saturated salt-

water mixture (~ - 20°C) liquid nitrogen-cooled methanol (~ -55°C) and liquid nitrogen (- 

196°C) 

3. Tensile 

a. Specimen Preparation  

 Tensile test specimens were machined from the three different sections 

using a band saw and finished with a CNC machine to ASTM standards [16].  Figure 15 

represents the tensile test samples.  Five samples were made to break in the rolled 

direction, and five samples were made to break in the transverse direction. 

 

Figure 15.   Tensile test sample. From [16] 
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b. Specimen Testing 

  Tensile testing was conducted using eight tensile test specimens machined 

from the base material plate.  Four specimens were cut longitudinally with the rolled 

direction and four specimens were cut transverse to the rolled direction.  All tensile tests 

were conducted using a strain rate of 2.1x10-3 per second.  The results are discussed in 

Chapter IV. 
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IV. RESULTS AND DISCUSSION 

A. VISUAL INSPECTION 

 Surface defects are readily apparent in the dry FSW.  As shown previously in 

Figures 3–7, there is significant weld flash and lack of bonding on the advancing side of 

the weld.  The wet FSW runs appear to be defect free ad fully penetrated welds with the 

exception of minor weld flash.   

B. CHEMICAL ANALYSIS 

 The testing done by Anamet, Inc. concluded that the base material has a similar 

chemical composition to HY-80 steel.  Table 1 shows the measured and required 

chemical composition of HY-80 steel. Table 2 compares the chemical compositions of 

the HY-80 and the HY-100 steels and it can be seen that the two steels are nearly 

identical in chemical composition and thus difficult to distinguish by chemical analysis 

alone.   

SPECTROCHEMICAL ANALYSIS     REQUIREMENTS 

 (Reported as WT%)           Ultra Service Steel 

            (USS HY‐80)    

            Min  Max    

Carbon   (C)  0.167   ‐‐‐  0.18    

Chromium  (Cr)  1.52   1.00 1.8    

Copper  (Cu)  0.09   ‐‐‐  0.25    

Manganese  (Mn) 0.39   0.10 0.40    

Molybdenum  (Mo) 0.24   0.20 0.60    

Nickel  (Ni)  2.33   2.00 3.25    

Phosphorous  (P)  0.015   ‐‐‐  0.025*    

Silicon  (Si)  0.24   0.15 0.35    

Sulfur  (S)  0.015   ‐‐‐  0.025*    

Titanium  (Ti)  <0.005   ‐‐‐  0.02    

Vanadium  (V)  0.01   ‐‐‐  0.03    

*P + S = 0.045 Max                  

Table 1.   Measured and required chemical composition of HY-80 steel. After [14] 
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   HY‐80  HY‐100 

Density      7.87 g/cc  0.284 lb/in³  7.87 g/cc   0.284 lb/in³

Tensile Strength, Yield     >=552 Mpa  >= 80000psi   >= 689 Mpa  >= 100000 psi 

Modulus of Elasticity      205 Gpa 29700 ksi 205 Gpa  29700 ksi

Poissons Ratio      0.280 0.280  0.280  0.280

Shear Modulus      80.0 Gpa 11600 ksi 80.0 Gpa  11600 ksi

Compostion (WT%)     Min  Max  Min  Max 

Carbon   (C)  0.12 0.18 0.12  0.20

Chromium  (Cr)  1.00 1.80 1.00  1.80

Copper  (Cu)  ‐‐‐ 0.25 ‐‐‐  0.25

Iron  (Fe)  93.1 96.4 92.8  96.2

Manganese  (Mn)  0.10 0.40 0.10  0.40

Molybdenum  (Mo)  0.20 0.60 0.20  0.60

Nickel  (Ni)  2.00 3.25 2.25  3.50

Phosphorous  (P)  ‐‐‐ 0.025* ‐‐‐  0.25

Silicon  (Si)  0.15 0.35 0.15  0.35

Sulfur  (S)  ‐‐‐ 0.025* ‐‐‐  0.025

Titanium  (Ti)  ‐‐‐ 0.020 ‐‐‐  0.020

Vanadium  (V)  ‐‐‐ 0.030 ‐‐‐  0.030

*P + S = 0.045 Max                

Table 2.   Comparison of HY-80 to HY-100 steel 

C. OPTICAL MICROSCOPY 

In the base material, lighter and darker bands parallel to the plane of the rolled 

sheet were visible (Figure 16).  This indicates that the thermomechanical processing did 

not completely homogenized the material by removing all remnants of segregation and 

coring effects. The microstructure is suggestive of a ferritic–pearlitic structure in lower 

strength steels and the final heat treatment to produce a tempered martensitic structure 

evidently did not remove these effects.   



 19

 

Figure 16.   Base material at 2.5x. A band-like distribution is visible. 

 The dry stir zone appears to be narrower than the wet stir zone.  The wet TMAZ 

appears to be narrower than the dry TMAZ.  This likely caused by the higher quenching 

rate of the wet FSW.  The wet stir zone appears to be more homogenized as well.   

 

Figure 17.   Montage of micrographs of dry FSW at 2.5x 

 

Figure 18.   Montage of micrographs of wet FSW at 2.5x 

 At the low magnification (Figure 19), the “flow bands” are more visible in the dry 

TMAZ.  The wet TMAZ is narrower than the dry TMAZ.  Additionally, the layering of 

ferrite and pearlite is still visible close to the TMAZ in both samples.  
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Figure 19.   Micrographs of the TMAZ at 2.5x magnification: Dry (l) and Wet (r) 

 At a higher magnification (Figure 20), the layering of pearlite and ferrite is more 

apparent as well as the “flow bands” in both samples. 

 

Figure 20.   Micrographs of the TMAZ at 10x magnification: Dry (l) and Wet (r) 

 At high magnification, the stir zones appear similar but the wet stir zone appears 

more homogenized than dry stir zone.  When compared to the base material both samples 

exhibit significant homogenization.  Under the optical microscope, it is difficult to tell 

whether the microstructure is martensitic or bainitic.  This will be discussed later with the 

scanning electron microscope results. 
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Figure 21.   Micrograph of the stir zone at 20x magnification: Dry (l) and Wet (r) 

 There does not appear to be any tunneling defects or any other major defects in 

either stir zone. 

D.  SEM MICROSCOPY 

Micrographs of the base material, TMAZ and stir zones, for both dry and wet 

FSW, were taken using the scanning electron microscope (SEM).  It was clear that the 

microstructure developed as result of the FSW an untempered martensite.  The 

homogenization of the stir zone compared to the base material was even more apparent 

with the SEM. 

 

Figure 22.   SEM Micrographs at various magnifications: (l to r) 500x, 1000x, and 5000 
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Figure 23.   Dry FSW TMAZ SEM Micrographs at various magnifications: (l to r) 500x, 
1000x, 5000x, 20,000x. 

 

Figure 24.   Dry FSW Stir Zone SEM Micrographs at various magnifications: (l to r) 
500x, 1000x, 5000x, 20,000x. 

 

Figure 25.   Wet FSW TMAZ SEM Micrographs at various magnifications: (l to r) 
500x, 1000x, 5000x, 20,000x. 

 

Figure 26.   Wet FSW stir zone SEM Micrographs at various magnifications: (l to r) 
500x, 1000x, 5000x, 20,000x 
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Figure 27.   Comparison of SEM Micrographs at 5000x: (l to r) Dry TMAZ, BM, Wet 
TMAZ. 

 

 

Figure 28.   Comparison of SEM Micrographs at 5000x: Dry SZ, BM, Wet SZ. 

 It is apparent from the SEM micrographs that there is significant change in the 

microstructure between the base and the stir zone and even the dry FSW and wet FSW.  

The wet stir zone and TMAZ show smaller grains than the dry stir zone and base 

material.   

E.  MECHANICAL PROPERTIES 

The mechanical properties of the base material were evaluated by Vickers 

hardness, Charpy V-Notch impact test and the tensile test.  The processed material was 

evaluated by Vickers hardness test.  The Vickers hardness was taken across the stir zone 

at various depths from the sample surface.   

1. Microhardness 

Vickers hardness values of the base material ranged from 224 to 272.  This is 

likely due to inhomogeneous material as previously discussed (including porosity, 

inclusion and the layering of ferrite and pearlite present. 
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Figure 29.   Microhardness data for Dry and Wet FSW 

 From this data, there is significant hardening in the TMAZ and stir zone over the 

base material.  This requires further research but most likely reflects martensitic 

transformation after FSW with insufficient time during cooling to produce tempering.  

The hardness across the wet FSW is more consistent. This may due to overlapping FSW 

runs.  

2.  Charpy V-Notch Impact Test 

Charpy V-Notch Impact testing was done to determine the Ductile-to-Brittle 

Transition Temperature (DBTT) of the base material to establish a baseline to compare 

the processed material.  Charpy V-Notch test revealed that our DBTT is between -192°C 

and -54.5°C.  DBTT below -50°C is desired as it will be outside of the operating 

temperature of U.S. Navy ships and submarines.  The figure below shows the data in 

more detail. 
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Figure 30.   Charpy V-Notch DBTT: Temperature vs. Impact Energy 

3.  Tensile Testing 

Tensile testing was conducted on the base material.  The yield strength (~750MPa 

or ~108ksi) is higher than would be expected for the HY-80 steel (strength of ~550 MPa 

or ~80ksi) leading one to believe that we may have HY-100 vice HY-80.  There is some 

abnormal data some of the tests.  More research is required to determine the cause of the 

abnormality.  Tensile testing on the processed material was not accomplished in this 

study. 
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Figure 31.   Tensile test with the sample in-line with the rolled direction. 

 

Figure 32.   Tensile test with sample transverse to the rolled direction. 
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V.  CONCLUSION 

A. SUMMARY OF THIS WORK 

In this work, preliminary studies were carried out on the feasibility of underwater 

FSW of HY-80 steel. In this work. the underwater welding was carried out in 3.5wt% 

NaCl water . 

1. To our knowledge. this forms the first study on feasibility of underwater 

FSW of HY-80 steel.  The feasibility of underwater FSW on HY-80 or 100 has been 

demonstrated.   

2. A non-non tempered martensitic microstructure was formed in the stir 

zone and this is reflected in a stir zone hardness that exceeds that of the base metal. 

3. A defect free weld can be accomplished underwater. 

4.  Underwater welding of HY-80 or 100 steels in seawater is feasible. 

 

These conclusions show that underwater FSW of HY-80 warrants further research 

as more questions have been raised than have been answered by this work.  The potential 

cost savings and decreased repair time for the Navy supports further research as well.  

Further research should focus on the non-tempered martensitic microstructure and how to 

limit or eliminated it altogether.   

B.  FUTURE RESEARCH 

1. The next logical step is conduct similar mechanical property studies on the 

processed material for comparison as well as hydrogen content analysis of the base 

material and processed material to ensure no hydrogen embrittlement is occurring. 

2. The cause of and preventions for the non-tempered martensitic 

microstructure formation in the stir zone should be evaluated.  If this cannot be 

controlled, the potential for FSW of HY-80 would be limited.  
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3. A tool test should be conducted to determine the best tool material, and 

FSW parameters to produce the best results while limiting tool wear.   

4. Future material obtained for testing should be requested to include 

certificates verifying the material. 
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APPENDIX A – MICROHARDNESS GRAPHS 
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APPENDIX B – ANAMET REPORT 
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